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I INTRODUCTION

In two previous studies, Ref. [1] and [2], particular

cap models for soils and rocks were introduced. The purpose

of this report is to indicate the manner in which previous

models may be generalized, if necessar., to more adequately

describe the behavior of geological materials. The full

scope and theoretical basis of the cap model is described so

as to demonstrate and define the capabilities and limits of

the model. Also, the fitting procedure and use of a

particular version of the general model is illustrated by

means of an example.

From a general point of view, a cap model falls within

the framework of the classical incremental theory of

plasticity and is- based on a loading function which serves as

both a yield surface and plastic potential. Typically, the

loading function is assumed to be isotropic and to consist of

two parts: a modified Drucker-Prager, Ref. [31, yield

condition, denoted by

f(lJ ) = 0 (1)

in which J and J are the first and second invariants of the

stress and deviatoric stress tensors, respectively,together with

hardening plastic cap

fK( K) = 0 (2)

which may expand or contract as the hardening parameter K

increases or decreases. These are illustrated in Fig. 1.

The model describes material behavior in compression (Jl1 < 0)
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and, in general, some type of tension behavior must be

postulated for completeness. Tensile behavior (for which

J! > 0) will not be considered here. P
In the previous models for soilz, the hardening.

parameter was taken to be

K = Cp  (3)V

in which e .ts the plastic volumetric strain, while forv

rocks

-fl(Jl 2)  ( ) + (;P)2 ( )= , ]dt (4)

0

pI
in which the C. are the principal components of the plastic

strain rate tensor and t is time. The use of Eq. (3)

permitted the cap to reverse itself when a point on the yield

curve f = 0 was reached, thus controlling the excessive

dilatancy predicted for soils by the Prager-Drucker model.

The use of Eq. (4) for rocks, which does not permit the cap

to move back, ensures dilatancy Nhile permitting

hysteresis in a hydrostatic load - unload cycle. Such

volumetric hysteresis is not present in the Prager-Drucker

model.

In the earlier models, the elastic portion of the

-behavior (which is most important in determining the unloading V
and reloading behavior of the model) was generally assumed

to be linear, i.e., it was described by constant bulk and

shear moduli.

i.4
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It was found that good fits (well within the scatter of

the experimental data) of stress-strain curves and loading

paths were obtained using an exponential function for fl and

an ellipse (tangent to fl = 0 for rocks,, and with a horizontal

tangent at its intersection with fl = 0 for soils) for f2 = 0.

While these particular forms of cap model are adequate

for many purposes, it is desirable to describe the model in

its most general form so as to clearly indicate the adapt-

ability and :flexibility as well as the limits of the cap

model approach. This is done in Section II. In Section III,

the procedure for fitting the cap model is briefly described,

while Section IV gives an example of a particular form of cap

model Which was used in ground shock calculations.
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II THE GENERALIZED CAP MODEL

The classical theory of plasticity allows for a broad

range of material behavior, and the cap model falls within

this range. Many previous applications of plasticity theory

for m-otals involved the assumption that volumetric strains

are purely elastic. The cap model however, is predicated j
on the fact that the volumetric hysteresis exhibited by many

geologic materials can also be described by a plasticity

model, if the model is based on a hardening yield surface

which includes conditiois of hydrostatic stress.. Guidelines

as .o how this may be done have been provided by Drucker,

Ref. (4], whose stability postulate is sufficient, although

not necessary, to satisfy all thermodynamic and continuity

requirements for continuum models. Stability ensures that all

physically reasonable initial-boundary value problems are pro-

perly posed in the mathematical sense.

The basic implications of Ref. [4] with respect to the

plastic portion of the material behavior are:

1) The yield surface should be convex in stress space

2) The loading function and plastic potential should

Loincide (associated flow rule)

3) Plastic strain or work "softening" should not occur,

i.e.,

.. P > 0 (5)
3 ij -

ini which a and a are the components of the stress
ij iif

and plastic strain tensors.

These conditions allow considerable leeway in choosing the
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functional forms f1 and f2 in Eqs. (1, 2), but the particular

functions given in Section -IV seem capable of adequately

describing most geological materials.

It should be noted that work by Mroz, Ref. (5] and Bleich,

Ref. [6], suggest that it may be possible to violate the above

conditions in ceitain cases without destroying the stability

of the model.

The fitting, of stress-strain curves and loading paths

using a cap model can be mproved by introducing a nonlinear

elastic component of behavior. This has been done by replacing

the constant bulk and shear moduli in the linear elastic

stress increment-strain increment e-uations

dJ1  3K dl (6)

dsi= 2G deij (7)

by

K = K(JI ) (8)

and

G = G(J 2 ) (9)

In the above equations I is the first invariant of the strain

tersor and si . and e.. a-re the stress and strain deviators,

respectively.

Additional flexibility in fitting experimental data can

be introduced into the model by generalizing Eqs. (8) and

(9) to

K K (JI'K) (10)

o3 = G (J1)

2 K
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*It should be noted that Eqs. (10) and (11), or Eqs. (8)

and (9), correspond to a hypoelastic model, Ref. [7], with

a positive definite elastic internal energy, W, which is

independent of stress path. This may be shown by writing

131 ds dJ
W i i.. i.i(s.s +J 6)

3 =3 i 31 ij 2G 9K ij

0 0

z s..ds.. + J dJ (12)

42G j ijK1 1

-o o
1 J 2 d J 2 + j l d J 2

2G(J2, K) 18K(JI , K)

0 0

During elastic deformation K is constant, so that the integrals

in the last member of Eq. (12) depend only on the current

values of J and J as well as on K Therefore, W is
2 1

independent of path during purely elastic deformations.

Further, since G and K are always positive, as is J W is

positive definite. Therefore, there is no possibility of

energy generation by the model.

In problems involving wave propagation at sites consis-

ting of layers of both soil and rock, it is desirable to be

able to use the same digital computer program for layers of

both kinds. This is not possible when the different harden-

ing parameters of Eqs. (3) and (4) are used. If, instead of

Eq. (4), the hardening parameter for rocks is taken to be

i 8



the maximum previous value of plastic compaction,

K = E p  (13)
v (max)

a generalized program which w ay be used for both soils and

rocks can be easily written. It should be pointed out that

the use of Eq. (13) instead of Eq. (4) does not permit the

introduction of dilatancy until the stress point first

reaches the yield surface fl = 0, but this loss in accuracy

of the fit may be less important than the improved efficiency

of using one generalized model for all geological materials.

It is also noteworthy that in those problems in which

no advantage is gained by using essentially the same compu-

tar code for rock as that -for soil, and where the rock is

not too porous, a model incorporating a yield surface f, = 0,

no cap, and different bulk moduli for loading and unloading,

is sufficiently accurate and simpler -to use than any cap

model. This possibility is discussed in more detail in

Appendix A.

It is also possible to include other features in cap

models, such as anistropy, rate dependence, and hardening

of the modified Drucker-Prager portion of the yield surface

(isotropic and/or kinematic hardening). Further, in some

cases it may be desirable to replace hypoelastic behavior

with hyperelastic behavior, Ref. [7], within the yield surface.

Since these additional possibilities have not been sufficiently

studied, they will not be included in this paper, but will

9



be reported upon later.

If it is necessary to introduce finite strains, jaumann's

stress rate and the rate of deformation replace the- stress 'I

and strain rates of Eqs. (6) and (7)', Ref. [7].

10
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III PROCEDURE FOR FITTING OF THE CAP MODEL

The procedure for obtaining the functional forms and

parameters used in cap models constructed for use in ground

shock computations is based on representative material data

obtained from laboratory tests on material samples.

Recently, in-situ material tests have come to be recognized

as having important potential in ascertaining material

behavior in situations of importance in ground shoclk

computations. Work is currently in progress along several

fronts to determine methods by which such tests can be

incorporated into the overall procedure for determining

material behavior.

The representative material behavior generally consists

of uniaxial strain and triaxial stress data. Sometimes,

hydrostatic, proportional loading, direct shaar and/or other

tests are available. The first step in the fitting procedure

is to employ the unloading portion of these cests to

determ-.ne appropriate elastic behavior of the model, since the

cap model behaves elastically during initial unloading in

these tests. For example, as long as the model behaves

elastically, unloading behavior indicates the bulk modulus K

in hydrostatic tests, the shear modulus G in triaxial stress

tests, and the combination K + 4/3 G in uniaxial stress tests.

Other tests, if available, may be used to check or adjust the

overall fit.

The next step in the fitting procedure is to establish

the failure envelope, i.e., the portion of the yield surface
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which limits the shearing stresses that the material can

withstand. While the failure envelope could bc chosen as a

work or strain hardening yield surface, it is generally

adequate and much simpler to assume it to be ideally plastic.

The failure envelope is generally obtained using failure data

from triaxial stress and proportional loading tests. This

data is fit by a function of the stresses, and is usually

assumed to involve only the first stress invariant and the

second invariant of the stress deviators.

The remaining step in the fitting procedure is the most

difficult. The cap portion of the model is obtained by a

trial and error procedure in which a cap shape and hardening

rule are assumed and the behavior of -this assumed model is t
computed and compared to the representative material data.

If the fit requires improvement, a new set of parameters is

tried and the procedure is repeated. The computation of the

model behavior can be based on the equations describing the

relations between the stress and strain increments during

the common laboratory loading paths. These equations are

derived in Appendix B for the case of uniaxial strain.

Obviously, the success of such a trial and error

procedure and the rapidity with which it converges is

strongly dependent on the experience of the mcdeler.

Knowledge of the effect on the model behavior of changes in

the cap model parameters is important for rapidly obtaining a

satisfactory fit. For example, the fitting procedure is

12



greatly simplified by the knowledge (obtained through

experience in fitting zeveral cap models by trial and error)

that the hardening rule strongly atfects the stress-strain

curves for uniaxial strain and hydrostatic paths, while the

shape of the cap plays an important role in determining the

stress-strain behavior for triaxial stress situations and

the stress path for uuiaxial strain. In fact, the hardening

rule has been obtained' for the most recent cap models by using

a separate program to compute the plastic volumetric strain

during hydrostatic loading.

S.I
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IV AN EXAMPLE OF A GENERALIZED CAPMODEL

In this section an example of the type .of cap model used

in recent ground shock calculations is presented. Specific

" imodel parameters and the resulting model behavior as-well as

the o-_iirtal material properties to which the model wasI
fitted are also presented.

The failure envelope and cap, Fig. 1, which describe

the entire yield surface of the material, intersectat J1 = L

The complete yield function, F(J ,-P), = 0, is

,BJI]

),Fi(J1,NJ 2 ) =A-J2  [A-Ce = 0 if L<J1  (14)

F(J1 2 = 2 2 2I (= (JI-L) +R J 2 - X-L)( (15)

= 0 if L>j

in which A, B and C are material .constants. The two quantities

L and X are functions of EP and represent respectivelyv

the values of J at the center of the cap and at the intersection

of the cap with the Jl-axis. These two quantities are

related to each other through the parameter k by

Z- X =R [A - Ce B
]

k if X < 0 (16)
L=

0 if Z > 0

and are related to the plastic volumetric strain C by means
v

of the hardening function

_(I X-D2X 2 ) D DX

Ep = W[e D X  1 - aDXe I-WFX e (17)
V F
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in which W, D, , D, D, W and D are material constants.

The quantity R in Eqs. (15, 16) represents the ratio of the

major to the minor axis of the cap and is given by

R R2L -R4 (L+R5) -
R(L) = 0 [1 + Rle 2 + R3e (18)

1

in which R0 , Ri, R2 , R3 , R4 and R5 are material constants.

The elastic portion of the model behavior is represented

by the bulk and shear moduli

K J

V( p 1 + Se _______
K(JI' eP) K KEI KIJI + 2 P (19)

Ei 1 1 2 cosh(K 2)(
1+ e 2 v

G~j-G
G( eGIe 2 2 + s (20)

J 2 ,e p ) = GGEl _G2  2 cosh(G 3 e v )

inhih ,,' J
1 + ne

in which KEI, 6, K1 , K2 , KS, y, GEil n, G1 , G 2 , G3 and

G are material constants.
s

For the material constants listed below the model behavior

is- shown in Figs. 2-4 together with the material representa-

tive propeities to which the model was fitted. In general, the

model agrees quite well with the representative properties.

The model parameters are

16
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p2
A = 0.405 ksi R4 = 0-.03 ksi - 2

B - 0.5 -ksi- 1  R 5 = 7.0 ksi

C= 0.403 ksi KEi = 444. ksi

W = 0.101 K = 26.6 ksi
s

-1
D = 2.0 ksi 1 = 5.28

a = 1.0 6 = -0.924

D = 16.0 ksi
- 1  K = 0.693-ksi

- 1

11

D2 = 0.0 ksi
2  K2 = 80

WF = -0.43 ksi - 1 G EI 267 ksi

DF = 3.65 ks- Gs = 5.4 ksi

R0 = 4.3 = 4

R., = 0.8 G 1 = 0.0 ksi - I

R2 = 4.0 ksi -1  G2 = 3.0 ksi -1

R = -3.5 G = 200

= -0.7

It should be noted that,in gen~ral, the choice of material

parameters cannot be made in completely arbitrary fashion.

For example,

A > C (22)

B > 0 (23)

R > 0 (24)

20



so the parameters R0, R1, R 2 P RIs R 4 and R 5must be chosenI

so as to satisfy Eq. (24) for all possible states of the

material. Further, the loading condition in conjunction

with the y-i&L--d condition F = 6 requries
2

2h dep d a d.. < 0 (25)-
p 13

and K > 0 and G > 0 must also be satisfied for all achiev-

able stress states of the material.

21
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APPENDIX A

it has been found while making fits for rocks of

low porosity, that the cap, f 0, may *aie chosen as
2

essentially vertical except near its intersection with

the yield surface fl = 0. The behavior of a cap model

with a vertical cap and a bulk modulus K (which may b.e a

constant or function of pressure) which is the same for

loading and unloading (see Fig. 5), i.e.,

KL = KU  (A-1)

is identical to the uncapped model (see Fig. -6) with

KL < KU (A-2)

That this is so can be readily seen by noticing that if an

associated flow rule is applied to a vertical cap only

plastic volume changes occur. The resulting hysteresis

in the stress-strain curves is also produced without the

cap if Eq. (A-2) is used.

It should be noted that use of an inequality like Eq.

(A-2) involving the shear modulus would violate the con-

tinuity requirements that load paths infinitesimally close

to a neutral loading path should result in essentially the

same stress-strain curves.

2~3



KL KU

FIG. 5 CAP MODEL WITH SAME BULK MODULUS
ON LOADING AND UNLOADING

fl =0

KL< KU

FIG.6 IDEALLY PLASTIC MODEL (WITHOUT CAP)
l WITH DIFFERENT BULK MODULI ON LOADING

AND UNLOADING
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APPENDIX B

CAP HrODEL BEHAVIOR IR UNIAXIAL STRAIN

The general material model considered here can be described

in three dimensional Cartesian coordinates by the incremental

relations

de.,. = de. + de!. (B-i

deE 1I +1 61.. (B-2)

ij 9Kij kk + G[daij 3 G..ckk]

F(G.. e ii £') 0 (B-3)[p i f F
de f~i(B-4)

10 if F<O0

in which the summation convention has been adopted, 6 is
E ii

"he Kronecker delta, and the de.. , de~ and de. denote the
ii31

increments of total strain, elastic strain, and plastic

and dX is a coefficient which is non-zero only when plastic

deformations occur. During plastic deformation Eqs. (B-3, 4)

F(o. ,er.) 0 (B-5)

de?. dl X 3F (B-6)

The elastic and plastic strains can be eliminated from Eqs.

(B-i, 2, 3, 4) by differentiating Eq. (B-5)

7dria +-- dS. =0 (B-7)
ij aJ ij

25



and substituting Eq. (B-2, 6) into Eqs. (B-i, 7) to obtain

Sdkk . d + (B-8)

i (9-K 6G ij k 2G i3 do (B

30 do + dX Do ac- = 0 (B-9)3o.. i3 a.. aep
"3 i3 ij

Multiplication of Eq. (B-8) by 6ij gives

DF

dkk 3K(drs - dX -- S ) (B-10)

rs

and substitution of Eq. (B-10) into Eq. (B-8) leads to

dc.. = 2GdE. + (K - !G)6 (d - d 'F rs)
Ii " "3 ij kk o rs rs (B-i)

2G dX a

13
Multiplication of Eq. (B-il) by 3F and subtraction of

the resulting relation from Eq. (B-9) gives an equation

which may be solved for dX
F 2G

'~~ )[( -) 6 de +2Gd
-- [ 3 rs kk + 2 Gdrs]

dX= rs 2 (B-12)

(K -- -) + 2G(- 3F D3 0 rs ars 3 Yrs DeP

rs

This may be rewritten as

(--)[KdeK6 + 2G de ]
au rs (B-i

dF 2 2 1 3F s 2  F (F
K(--- a rs ) + 2G(-- 3 8 p ) -
Drs rsrs 33 pq rs 3 ap

rs

in which ders 3 dkk6 rs are the deviatoric strains.

The incremental stress strain relations during plastic de-

formation may be obtained by substituting Eq. (B-13) into

Eq. (B-Il). The yield surface F(Gi. ' siP) = 0 in the models

26



considered here are assumed to involve only the invariants

Jl = 6ij 6ij = akk (B-14)

S 1 = 1)(a 1 J6) (B-)
J2 2 1j L2 3 3 1 - j i 13 3 11-)

v rs rs kk (B-16)

in which the S.. are the deviatoric stresses. Therefore
13

F(JI'J 2  EP) = 0 (B-17)

and

3F 1F I 1 _F 3J2 R 6 + 3F s ..a.= + D-o6 + '2 (B-
i3 ij 2 "/2 13 a 2 I,

;F 3 v = _ F 6 (B-19)

a svp aJ p rs
rs v rs v

Introducing Eqs. (B-18, 19) into Eqs. (B-Il, 13) gives

doi= K6i (dckk - 3dX --F) + 2G(de.,1 - dX a (B-20)
13 1 dij aV J 24J 2

2 2

3F ______ s
3a1 Kdk k + G rl de

d = 2 2 2 (B-21)
9 F F2 _ 3F 3F
3- 1 + S Jl v

32 v

For the case of uniaxial strain in the z-direction, the

following relations hold

= S = yz = C = 0 (B-22)xx yy xy yz zx

a = 0 = C (B-23)xx yy r

Denoting the axial stress and strain by a and Cz z

27"



respectively, one can write

ikk dc (B-24)

2 j

de d e d (B-25)zz 3 z.

de de =_ dc (B-2b)xx yy 3 z

de de =de =0 (B-27)
xy yz zx

J a a + 2a (B-28)z r I
2

Szz= 3 -a r ) (B-29)

s =5 a.( -Ba)0xx yy 3 z r (B-30)

s =S =S =0 (B-31)
xy yz zx

I a 43 Is I (B-32)

Substitution of these equations into Eq. (B-20, 21) gives

(3K 3F + G 3F 2s

d2 = 2 (B-33)2  F2
9K 3 + G( - ) -

1i 18 c

and

dSz= 2(- d - dX -- s ) (B1-34)

2

dJ1 = 3K(dc - 3dX - i )  (B-35)

Furthermore,

dcp = dX 8F 6. 3d 8F (B-36)

28



Equations (B-33, 341 35, 36) may be integrated numerically

to obtain the stress-strain curve of the model in uniaxial

strain provided that Eq. (B-33) can be evaluated for d.

This can always be done except when

=0 (B-37)
J1 a' J2

2

which can happen for the model of Section IV only for F = F2

if and only if

S = J ep = L = X = 0 (B-38)
z 1 v

In this case one may employ an asymptotic approach in which

all quantities which vanish are expanded about the origin in

stress space

J,= 3 , dJ I = J dt (B-39)

= d t , = dt (B-40)

= t , dX = I dt (B-41)

s =S s , ds= s dt (3-42)

P = t dep = iP dt (B-43)
vv v v

where t is a parameter which is to approach zero.

Then

= 2(J - L) = 2(Jl - (B-44)

1 1

2 2  2 3 is' (B-45)

a 2 R

2
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Substituting Eqs. (B--39 to 45) into Eqs (B-33 to 36) gives

t6K(J -
) + 2G.R.i sz ] Cz  (B-46)

.2 4 ;2 DF 1
36K.(J1 - L) + 3GR" 6 -6 L)

•2 - XR. s t) (B-47);z = 2G (3 ez i z (-7

il 3K.[e z - 6i (I - L)t] (B-48)

iP = 6X t (J! - L) (B-49)

in which K. , G. and R. are the bulk modulus, shear modulus
1 1

and cap shape factor under conditions (B-38).

Consider Eq. (16) of Section IV,

£ - X = R[A - Ce B ]  (B-50)

By means of Eqs. (22, 24) it is clear that 9 >X , which

implies that Z > 0 Therefore, by Eq. (16), L is

instantaneously equal to zero, even though i is not zero.

For L = 0

3F2 2 dXdX
=2 -d 2(X - L)d = -2Xt -

p xdep de p d~

v v (B-51)

dx2 *2 d 2

-2t(--) - 12Xt J (- d X-)
dep v Idep

V v

Then Eq. (B-46) becomes

( + 2GiR.s ) -,
it I= z (B-52)

36K 2 + 3GR 2 + 72 2 2 - it

z 1de p
v
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Equation (B-61) is useful for fitting the nodel in the low

stress region where the seismic behavior of the material

may be important.
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Let ~j
SA (B-53)

-z z dC pv

Then Eqs. (B-47, 48, 52) become

4G. 2
$ 3- 2G A R. s (B-54)

J 3K. - 18 K. A J (B-55)

2
6K.J + 2G.R.s

A 1 1 1 (B-56)
A=2 4 2 2 2 (-6
36K.J + 3G.R. s + 72 j A Q

I 11

Equations (B-54, 55, 56) may be solved for s, J and A

After some algebra one finds

(3& 
4G. 3K. )

A = 1 i - (B-57)
6 (4 R 2

3K.A (B-58)

=1 + 18 K.A

S = (B-59)

in which = s/J is the slope of the stress path and

satisfies the equation

/3 ---( .. ) d__ x = 4 R2 ) 1+3 R2  2 (B-60)
G - 3K i dep 1 4 i

The initial modulus %I. for uniaxial strain is given by

+

. 3

3( + -)K (4 -R. 2) ( + 1) (4 R R. )-3 i i 3 1 (B-61)

2 (3R2
4 R + 3K

2z i G. 3K.
3. 1
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Equation (B-61) is useful for fitting the model in the low

stress region where the seismic behavior of the material

may be important.
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